
The Verification of ARMv7 memset

Charles Averill
charles@utdallas.edu

The University of Texas at Dallas
Texas, USA

David Wank
qwe@utdallas.edu

The University of Texas at Dallas
Texas, USA

Takemaru Kadoi
takemaru.kadoi@utdallas.edu

The University of Texas at Dallas
Texas, USA

Payton Harmon
payton.harmon@utdallas.edu

The University of Texas at Dallas
Texas, USA

ABSTRACT
We demonstrate an incomplete, partial verification of the memset
routine on 32-bit ARMv7 architectures using the Picinæ system.
Used to fill a buffer with a provided 8-bit value, memset is a core
function of the C Runtime Library and therefore should be held to
a high level of scrutiny.

ACM Reference Format:
Charles Averill, David Wank, Takemaru Kadoi, and Payton Harmon. 2018.
The Verification of ARMv7 memset. In Proceedings of Language-Based Secu-
rity ’23 (LBS). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
1122445.1122456

1 MEMSET
On the surface, the generic memset algorithm is a relatively trivial
routine, even in assembly. However, its optimized MUSL ARMv7
form utilizes a number of loop unrolls, conditional instruction pre-
fixes, and binary arithmetic optimizations that introduce many
layers of complexity not only in verification of the function, but in
understanding its internal workings at all.

Listing 1: Naïve memset Implementation
1 void *memset(void *dest , int value , size_t size)
2 {
3 unsigned char *p = dest;
4 while (size -- > 0)
5 {
6 *p++ = value & 255;
7 }
8 return dest;
9 }

Listing 1 shows a standard single-loop C implementation of
memset that sets the contents of dest one byte at a time. Figure 1
and Listings 3 and 2 show the control flow, a manual decompilation,
and the direct disassembly of the optimized implementation.

The general structure of the code is as follows:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LBS, Aug 21–Dec 15, 2023, Richardson, TX
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

T FR2 >= 8

F Write to dest
Increment dest

Write to dest
Increment dest

Write to dest
Increment dest

Write to dest
Increment dest

T

F

R2 <> 0

Small Block Writes

Large Block Writes

R2 >= 8

dest is byte-
aligned?

Write to dest
Increment dest

F

Write dest[:dest+8]
Increment dest x8

Write dest[:dest+8]
Increment dest x8

Write dest[:dest+8]
Increment dest x8

Write dest[:dest+8]
Increment dest x8

T

T

Figure 1: Control Flow of ARMv7 memset

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

LBS, Aug 21–Dec 15, 2023, Richardson, TX Averill, Wank, Kadoi, Harmon

1.1 Setup
We will assume the following mapping between registers and their
higher-level values:

• R0 - dest, the pointer to write into
• R1 - value, the value to write into dest
• R2 - size, the number of positions in memory to write
• R3 - A copy of dest, incremented over time as each write
occurs so that an accompanying index variable is not needed.
We refer to this as the moving pointer
• R12 - Before Loop 2 executes, R1 is cast to an 8-bit integer,
and then duplicated twice into its upper bits. This value is
then copied into R12

R1 = R12 = 𝑣𝑎𝑙𝑢𝑒 [7:0] 𝑣𝑎𝑙𝑢𝑒 [7:0] 𝑣𝑎𝑙𝑢𝑒 [7:0] 𝑣𝑎𝑙𝑢𝑒 [7:0]

1.2 Loop 1: Byte Alignment
Loop 1 aligns dest to a 4-byte boundary (that is, dest & 3 = 0). As
it’s doing so, it writes directly to dest, one byte at a time. Alignment
is necessary to prepare for the block copies that occur in Loop 2.
Block copies are multi-byte move instructions that either require
alignment to prevent alignment faults, or prefer alignment to avoid
performance penalties, depending on the exact architecture.

1.3 Loop 2: Large Block Writes
Loop 2 performs writes into dest in multiple positions in each
individual STM (Store Multiple) instruction. This loop is further
optimized by being partially-unrolled four times. Each unrolled
loop instance writes 8 bytes of memory at once, and uses the HS
flag instruction prefix for conditional execution. The HS flag is set
only when a subtraction results in a value less than zero. Therefore,
by subtracting from R2 whenever a write occurs, we can track if we
have run out of characters to write, and terminate the loop early by
skipping over the remaining instructions. In Figure 1, blue blocks
signify these conditional executions and a subtraction from R2.

1.4 Loop 3: Small Block Writes
Loop 3 follows the same logic as Loop 2, but only performs single-
byte writes per unrolled loop.

2 CORRECTNESS
The following correctness specification states that, for all input
values of memset, every position between dest and dest + size
is equal to the lower 8 bits of value.

𝑎𝑙𝑙𝑒𝑞 :=∀𝑑𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑠𝑖𝑧𝑒,
∀𝑖, 𝑖 < 𝑠𝑖𝑧𝑒 =⇒ 𝑚𝑒𝑚(𝑑𝑒𝑠𝑡 ⊕ 𝑖) = 𝑣𝑎𝑙𝑢𝑒 % 28

A vital aspect to note of the memset header is that because it
specifies size, the number of byte writes to perform, the function
cannot loop more than 232 times. This is incredibly helpful, as
proving the correctness of any routine dealing with memory will
likely have to deal with regions of memory that wrap around the
address boundary and intersect with themselves. Occurrences like
these essentially never happen in the real world, but that is not a
strong enough guarantee to convince Coq.

3 PROOF STRUCTURE
The core of our proof structure, the invariant set, specify points in
the program where we expect specific properties to be true. These
invariants act as guidelights to coerce our proof to correctness by
unifying the state of the program at various points in the execution.
Many of our invariants use the following common invariant at their
core:

𝑐𝑜𝑚𝑚𝑜𝑛_𝑖𝑛𝑣 := 𝑟1 % 28 = 𝑣𝑎𝑙𝑢𝑒 % 28∧
(∃𝑘, 𝑘 ≤ 𝑠𝑖𝑧𝑒 ∧

𝑟3 = (𝑑𝑒𝑠𝑡 + 𝑘) % 232 ∧ (𝑘 + 𝑟2) % 232 = 𝑠𝑖𝑧𝑒 ∧ 𝑎𝑙𝑙𝑒𝑞
)

4 CHALLENGES AND PROGRESS
4.1 Conditional Execution
Many assembly formal verification processes are subject to mo-
ments of curiosity, in which semantics of the machine language
unexpectedly creates challenges for verifiers. Our example of this
was ARM conditional execution.

In the 32-bit ARM ISA, all instructions have a 4-bit condition
field which predicates the instruction on the specified condition.
If the condition is met, the instruction executes; otherwise, the
instruction is effectively a no-op.

In memset, the second and third loops of the program are partially
unrolled using this mechanism. A store of the desired byte is set
predicated on the carry flag, which is then followed by a subtraction
from the remaining number of bytes predicated on the same carry
flag, which also updates the flag.

This has the effect of attempting, four times in a row, to write
more bytes. This is correct because if the carry flag becomes unset
by one of the conditional executions (the counter reaches zero), the
rest of the attempts in the loop do not execute.

In the context of the Picinæ system, this effectively gets con-
structed as a control flow graph of the various possibilities of what
was executed. We dubbed this the "diamonds problem." Could it be
the case that the instructions executed four times, three times, two
times, one time, or not at all? As it turns out, the Picinæ system is
able to discard impossible cases (one conditional case does not exe-
cute, but another later in the loop does) so the problem effectively
becomes solving one case, then slightly adjusting it to fit the other
slightly different possibilities.

4.2 Accomplishments
This project has successfully completed a number of the initial
goals. The common invariant and the correctness specification
were written and served as a basis for the rest of the proof. We also
completed one of our binary arithmetic helper theorems, proved
the first loop, and made significant headway on both the second
and their loop.

There are multiple cases that require proving aspects of binary
arithmetic necessitating the use of a separate theorem for ease of
proving the goals. One of the theorems we proved states:

∀𝑛 𝑚 𝑝, 𝑛 ⊕𝑚 = 𝑛 ⊕ 𝑝 ⇐⇒ 𝑚 = 𝑝

The Verification of ARMv7 memset LBS, Aug 21–Dec 15, 2023, Richardson, TX

We wrote theorems for two other binary arithmetic challenges but
have yet to prove them instead opting to admit them and come
back to it later.

The byte-alignment loop has been completely proven. Although
the first loop is the smallest and simplest of the three, the proof of
its correctness used patterns for dealing with memory-modifying
code that we’ve reused in the in-progress proofs for the remaining
loops.

The large-block and small-block loops have been partially proven.

4.3 Next Steps
The project ran into a few roadblocks that prevented it from being
completed, notably helper theorems that prove aspects of binary
arithmetic, as well as the second and the third loop proofs.

We used 3 binary arithmetic theorems, only one of them proven
formally. We believe the admitted proofs are true due to near-
exhaustive testing but have not completed the proof yet. These
theorems are:

∀𝑛 𝑚 𝑝 𝑞, 𝑛 ≤ 𝑚 =⇒ 𝑝 ≤ 𝑞 =⇒ 𝑛 ⊕ 𝑝 ≤ 𝑚 ⊕ 𝑞
and

∀𝑛 𝑚, 𝑛 < 𝑚 ⊕ 1 =⇒ 𝑛 ≤ 𝑚.

When it comes to proving the invariants, there is still a lot of
work that needs to be done in both the second and the third loop.
Despite having code on both of the proof, each of them contain
conditional execution that thoroughly stumped any meaningful
progress on the rest of the proof. Loop three is simpler as it writes
one byte at a time so the next steps should start there. Once the
diamonds challenge is complete as discussed in 4.1 there are two
problems that need to be addressed. The first is proving the cor-
rectness specification and showing that all written bytes are equal
to the value set in the invariant. A subsection of this problems in-
volves proving the the write does not loop back in itself and overlap
previous bytes in the array. With the single byte write in the third
loop complete the final step after that will be to prove the same
challenges in the third loop but that it holds when writing 8 bytes
at a time.

4.4 Timeline
The work on memset started in Summer 2023, however significant
progress began around September. The common invariant was first
implemented in early September, leading to a large amount of head-
way on the byte-alignment loop. Most work done in October was
towards proving small binary arithmetic cases and investigating
what would be required for the large-block and small-block writes.
In the first week of November, we hit our largest milestone: veri-
fying that the first loop of memset was indeed correct. Convinced
that this was the tipping point, we went forward into proving the
remaining loops correct, and ran into the issues with conditional
execution that have slowed us down since. The remainder of our
time has been spent handling remaining binary arithmetic and
conditional execution cases.

LBS, Aug 21–Dec 15, 2023, Richardson, TX Averill, Wank, Kadoi, Harmon

A APPENDIX

Listing 2: memset Disassembly
1 undefined __stdcall memset
2 undefined r0:1 <RETURN >
3 void * r0:4 dest
4 undefined4 r1:4 value_to_set
5 undefined4 r2:4 len
6 memset:
7 cpy r3,dest
8 cmp r2 ,#0x8
9 bcc loop_3
10 loop_1:
11 tst r3 ,#0x3
12 strbne r1 ,[r3],#0x1
13 subne r2,r2 ,#0x1
14 bne loop_1
15 and r1,r1 ,#0xff
16 orr r1,r1,r1, lsl #0x8
17 orr r1,r1,r1, lsl #0x10
18 cpy r12 ,r1
19 loop_2:
20 subs r2,r2 ,#0x8
21 stmiacs r3!,{r1,r12}
22 subcss r2,r2 ,#0x8
23 stmiacs r3!,{r1,r12}
24 subcss r2,r2 ,#0x8
25 stmiacs r3!,{r1,r12}
26 subcss r2,r2 ,#0x8
27 stmiacs r3!,{r1,r12}
28 bcs loop_2
29 and r2,r2 ,#0x7
30 loop_3 :
31 subs r2,r2 ,#0x1
32 strbcs r1 ,[r3],#0x1
33 subcss r2,r2 ,#0x1
34 strbcs r1 ,[r3],#0x1
35 subcss r2,r2 ,#0x1
36 strbcs r1 ,[r3],#0x1
37 subcss r2,r2 ,#0x1
38 strbcs r1 ,[r3],#0x1
39 bcs loop_3
40 bx lr

Listing 3: Manually-Decompiled memset

1 int F_HS = 0;
2 #define SUB(dest , left , right)
3 dest = left - right; F_HS = dest < 0;
4

5 void* memset(void* dest , int value , size_t size)
6 {
7 char* r0 = (char*)dest;
8 int r1 = value;
9 int r12 = 0;
10 int r2 = size;
11 char* r3 = r0;
12

13 if (r2 >= 8)
14 {
15 // LOOP 1 : Byte Alignment
16 while ((int)r3 & 0b11)
17 {
18 r3[0] = value;
19 r3++;
20 SUB(r2, r2, 1);
21 }
22

23 // Prepare value
24 r1 &= 255;
25 r1 |= r1 << 8;
26 r1 |= r1 << 16;
27 r12 = r1;
28

29 // LOOP 2 : Large Block Writes
30 do
31 {
32 SUB(r2, r2, 8);
33 if (!F_HS)
34 {
35 *((int*)r3) = r1;
36 *((int*)(r3 + sizeof(int))) = ←↪

r12;
37 r3 += 2 * sizeof(int);
38 }
39

40 if (!F_HS) SUB(r2, r2, 8);
41 if (!F_HS)
42 {
43 *((int*)r3) = r1;
44 *((int*)(r3 + sizeof(int))) = ←↪

r12;
45 r3 += 2 * sizeof(int);
46 }
47

48 if (!F_HS) SUB(r2, r2, 8);
49 if (!F_HS)
50 {
51 *((int*)r3) = r1;
52 *((int*)(r3 + sizeof(int))) = ←↪

r12;
53 r3 += 2 * sizeof(int);
54 }
55

56 if (!F_HS) SUB(r2, r2, 8);
57 if (!F_HS)
58 {

The Verification of ARMv7 memset LBS, Aug 21–Dec 15, 2023, Richardson, TX

59 *((int*)r3) = r1;
60 *((int*)(r3 + sizeof(int))) = ←↪

r12;
61 r3 += 2 * sizeof(int);
62 }
63 } while (!F_HS);
64

65 // abs(size) if (size > 8)
66 r2 &= 7;
67 }
68

69 // LOOP 3 : Small Block Writes
70 do
71 {
72 SUB(r2 , r2, 1);
73

74 if (!F_HS)
75 {
76 *r3 = (char)r1;
77 r3++;
78 SUB(r2, r2, 1);
79 }
80

81 if (!F_HS)
82 {
83 *r3 = (char)r1;
84 r3++;
85 SUB(r2, r2, 1);
86 }
87

88 if (!F_HS)
89 {
90 *r3 = (char)r1;
91 r3++;
92 SUB(r2, r2, 1);
93 }
94

95 if (!F_HS)
96 {
97 *r3 = (char)r1;
98 r3++;
99 }
100 } while (!F_HS);
101

102 return r0;
103 }

	Abstract
	1 memset
	1.1 Setup
	1.2 Loop 1: Byte Alignment
	1.3 Loop 2: Large Block Writes
	1.4 Loop 3: Small Block Writes

	2 Correctness
	3 Proof Structure
	4 Challenges and Progress
	4.1 Conditional Execution
	4.2 Accomplishments
	4.3 Next Steps
	4.4 Timeline

	A Appendix

