
Prettybird: A DSL for Programmatic Font Compilation
https://www.charles.systems/ Charles Averill charles@utdallas.edu

Co-Author: Takemaru Kadoi Advisor: Kevin Hamlen

The University of Texas at Dallas

Motivation

Improvements in display technology and the adoption of the internet have
led to greater public interest in digital typography. [7]
Font design software and custom fonts have become more accessible and
common, attracting beginners.
Quality font design requires a large time commitment.
Community lacks beginner‐friendly font design tools, most are either archaic
or expensive.

Designing tools that utilize the strengths of both graphical font design and
font description languages provides existing font designers with more agency
in designing unique fonts, and new font designers with a modern approach to
the practice.

Background

METAFONT is an existing font description language developed by Knuth [4] [5]
as a companion to TEX [3].

METAFONTis comprehensive and versatile, but a very old piece of software
initially burdened by hardware limitations [1].
Can’t generate modern outline fonts without the help of external
post‐processing [6].
Complex syntax due to technological limitations of implementation
languages.
Relies on mathematical symbols and short keywords, making it seem archaic
compared to modern description languages such as SVG and LATEX.
Despite drawbacks, METAFONTis versatile and provides a high level of
control with its reusable pens and variable‐length Bézier curves.

Graphical font design suffers a separate set of problems, the primary issue being
price. Of the five most‐searched font design programs since 2011, 4 of them
require a paid license, and 3 of those licenses cost $250 USD or more. The one
free program is also open‐sourced, but development has slowed since 2014.

Compiler and Language Design

We present a compiler that generates BDF, SVG, and TTF font files from
Prettybird source code. The compiler back‐end additionally outputs curve data
viewable within the FontForge GUI, for quick and seamless visual feedback to
users. The figures below show an example outline font built with Prettybird, as
well as a function used in the B, D, P, and R glyphs.

1 define bubble(top, bottom , width , direction) {
2 // inner bubble
3 draw bezier(top, top + (direction * width , width),
4 top + (direction * width , 0))
5 draw bezier(top, top + (direction * width * 1.25, width),
6 top + (direction * width * 1.25, 0))
7 // outer bubble
8 draw bezier(top + (direction * width , width), bottom ,
9 bottom + (direction * width , 0))

10 draw bezier(top + (direction * width * 1.25, width),
11 bottom ,
12 bottom + (direction * width * 1.25, 0))
13 }

The language design was primarily motivated by a desire for readability,
for both programmers and artists. This resulted in a syntax consisting of
unabbreviated keywords and verbose, explicit block declarations. Prettybird
supports basic mathematical operations, but complex behavior is defined only
through recursion.

Each operation in the language modifies a glyph space, a 2D plane on which
shapes are drawn to construct glyphs. Calling functions spawns a new, empty
child glyph space on which that function’s operations within that function
operate. When the function terminates, its glyph space is combined with the
space below it in the glyph space stack via a binary union.

Type System

We present a novel type system consisting of two types (numbers and
pairs) that is functionally equivalent to METAFONT’s 8‐type system. The
compiler back‐end also implements a type‐checker that implicitly enforces
type‐correctness of atom arguments.

Anonymous User Survey

We present an anonymous user survey displaying user preference of Prettybird
over METAFONT. 63 respondents were provided code samples in both
Prettybird and METAFONT [2] and were asked to choose which code sample
was more readable, which they would prefer to modify, and which glyph looked
better. They were also asked to self‐identify as one or multiple of programmers,
font designers, and familiar with Bézier curves. Respondents overwhelmingly
preferred the simplicity of Prettybird’s code and the higher‐resolution glyphs it
could produce, by margins of upwards of 80%.

1 char I {
2 base {
3 blank(48, 72)
4 }
5
6 steps {
7 draw vector((24, 6), (24, 42))
8 draw bezier((18, 7), (18, 43),
9 (20, 24))

10
11 draw vector((18, 7), (24, 6))
12 draw vector((18, 43), (24, 42))
13 }
14 }

One of the code samples and generated glyphs shown to respondents

Claimed Prettybird "I" glyph code
was more readable

Claimed METAFONT "I" glyph code
was more readable

Preferred to modify Prettybird "I"
glyph code to change glyph shape

Preferred to modify METAFONT "I"
glyph code to change glyph shape

100%

88%

12%

100%

80%

20%

Preferences for "I" glyph

Programmers
Font Designers

Claimed Prettybird spiral
glyph code was more readable

Claimed METAFONT spiral
glyph code was more readable

Preferred to modify Prettybird spiral
glyph code to change glyph shape

Preferred to modify METAFONT spiral
glyph code to change glyph shape

84%

16%

88%

12%

90%

10%

90%

10%

82%

18%

86%

14%

Preferences for spiral glyph

Programmers
Font Designers
Familiar with Bezier Curves

Preferences of Prettybird over METAFONTin readability and modifiability
among programmers, font designers, and those familiar with Bézier curves.

Reflection and FutureWork

Prettybird provides new opportunities for font designers to approach the craft
from a different angle by revitalizing an abandoned approach. We are currently
improving Prettybird by better integrating it with visual font design software
in order to bring a fresh approach to the field. Additionally, we are extending
the language within the bounds of simplicity that we’ve set in order to provide
a more powerful experience without sacrificing the ease of use the language is
built on.

References

[1] Nelson H. F. Beebe. The design of tex and metafont: A retrospective. 2005.
[2] Jeremy Gibbons. Dotted and dashed lines in metafont. 02 1970.
[3] Donald Knuth. TEX and METAFONT. American Mathematical Society, 1979.
[4] Donald Ervin Knuth. Computers and typesetting, volume D ‐ METAFONT: The Program. Addison Wesley, 1990.
[5] Donald Ervin Knuth. Computers and typesetting, volume C ‐ The METAFONTbook. Addison Wesley, 1990.
[6] Han‐Wen Nienhuys. mftrace, Dec 2011. URL http://lilypond.org/mftrace/.
[7] Bram Stein. Webfont usage. Fonts | 2022 | The Web Almanac by HTTP Archive, Sep 2022. URL https://almanac.httparchive.org/

en/2022/fonts#fig-1.

PLDI SRC 2023 | Orlando, Florida

https://www.charles.systems/
mailto:charles@utdallas.edu
http://lilypond.org/mftrace/
https://almanac.httparchive.org/en/2022/fonts#fig-1
https://almanac.httparchive.org/en/2022/fonts#fig-1

	References

